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Abstract:  A large number of cloud forces require users to carve up private data like electronic health records for data 

analysis or mining, bringing privacy concerns. Anonymizing data sets via generalization to satisfy certain privacy 

requirements such as k-anonymity is a widely used category of privacy preserving techniques. At present, the scale of 

data in many cloud applications increases massively in accordance with the Big Data trend, thereby making it a 

challenge for commonly used software tools to confine, manage, and process such large-scale data within a adequate 

elapsed time. As a result, it is a challenge for existing anonymization approaches to accomplish privacy preservation on 

privacy-sensitive large-scale data sets due to their insufficiency of scalability. In this paper, we propose a scalable two 

phase top-down specialization (TDS)  to anonymize large-scale data sets using the MapReduce framework on cloud. In 

both phases of our approach, we deliberately design a group of inventive MapReduce jobs to concretely accomplish the 

specialization computation in a highly scalable way. Experimental assessment results demonstrate that with our 

approach, the scalability and efficiency of TDS can be significantly enhanced over existing approaches. 
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I. INTRODUCTION 

 CLOUD computing, a disruptive trend at present, 

poses a considerable impact on current IT industry and 

research communities [1]. Cloud computing provides 

massive computation power and storage capacity via 

utilizing a large number of commodity computers together, 

enabling users to organize applications cost-effectively 

without heavy infrastructure asset. Cloud users can reduce 

huge upfront investment of IT infrastructure, and focus on 

their own core business. However, numerous possible 

customers are still diffident to take advantage of cloud due 

to privacy and security concerns [5]. The research on cloud 

privacy and security has come to the depiction [9]. Privacy 

is one of the most concerned issues in cloud computing, 

and the concern aggravates in the perspective of cloud 

computing although some privacy issues are not new[1], 

[5]. Personal data like electronic health records and 

financial transaction records are usually deemed extremely 

sensitive although these data can present significant human 

benefits if they are analyzed and mined by organizations 

such as disease research centres. Data privacy can be 

divulged with less effort by malevolent cloud users or 

providers because of the failures of some conventional 

privacy protection measures on cloud [5]. This can bring 

substantial economic loss or strict social reputation 

mutilation to data owners. Hence, data privacy issues need 

to be addressed urgently before data sets are analyzed or 

pooled on cloud. Data anonymization has been extensively 

studied and widely adopted for data privacy preservation 

in non interactive data publishing and sharing scenarios 

[11]. Data anonymization refers to hiding characteristics 

and/or sensitive data for owners of data records. Then, the 

privacy of an individual can be effectively preserved while  

 

certain increasing information is exposed to data users for 

various analysis and mining. A variety of anonymization 

algorithms with different anonymization operations have 

been proposed [15]. However, the scale of data sets that 

need anonymizing in some cloud applications increases 

tremendously in accordance with the cloud computing and 

Big Data trends [1]. Data sets have become so large that 

anonymizing such data sets is becoming a considerable 

challenge for conventional anonymization algorithms. The 

researchers have begin to investigate the scalability 

problem of large-scale data anonymization. Large-scale 

data processing frameworks like MapReduce have been 

included with cloud to provide dominant computation 

capability for applications. So, it is promising to adopt 

such frameworks to address the scalability problem of 

anonymizing large-scale data for privacy preservation. In 

our research, we leverage MapReduce, a widely adopted 

analogous data processing framework, to address the 

scalability problem of the top-down specialization (TDS) 

approach [12] for large-scale data anonymization. The 

TDS approach, offering a good trade off between data 

effectiveness and data reliability, is widely applied for data 

anonymization [12]. Most TDS algorithms are centralized, 

resulting in their insufficiency in handling large scale data 

sets. Although some dispersed algorithms have been 

proposed they mainly focus on secure have been proposed 

they mainly focus on secure anonymization of data sets 

from numerous parties, rather than the scalability aspect. 

As the MapReduce computation hypothesis is moderately 

simple, it is still a challenge to design proper MapReduce 

jobs for TDS. In this paper, we propose a highly scalable 

two-phase TDS approach for data anonymization based on 
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MapReduce on cloud. To make full use of the parallel 

capability of MapReduce on cloud, specializations 

required in an anonymization process are split into two 

phases. In the first one, original data sets are partitioned 

into a group of smaller data sets, and these data sets are 

anonymized in parallel, producing intermediate results. In 

the second one, the intermediate results are integrated into 

one, and further anonymized to achieve consistent k-

anonymous data sets. We leverage MapReduce to 

accomplish the concrete computation in both phases. A 

group of MapReduce jobs is purposely designed and 

corresponding to perform specializations on data sets 

collaboratively. 
The major contributions of our research are threefold. 

First, we cratively apply MapReduce on cloud to TDS for 

data anonymization and consciously design a group of 

innovative MapReduce jobs to concretely accomplish 

thespecializations in a highly scalable fashion. Second, we 

propose a two-phase TDS approach to gain high scalability 

via allowing specializations to be conducted on several 

data partitions in parallel during the first phase. Third, 

experimental results show that our approach can 

significantly improve the scalability and efficiency of TDS 

for data anonymization over existing approaches. The 

remainder of this paper is organized as follows: The next 

section reviews related work, and analyzes the scalability 

problem in existing TDS algorithms. 

The remainder of this paper is organized as follows: The 

next section reviews related work, and analyzes the 

scalability problem in existing TDS algorithms. In Section 

III, we briefly present proposed system for our approach. 

Section IV preliminary approach, and Section 5 formulates 

the two-phase TDS approach. In Section 6 formulates 

mapreduce version of centralized TDS. Finally, we 

conclude this paper. 

II. . RELATED WORK AND PROBLEM  ANALYSIS 

A. Related Work 

Recently, data privacy preservation has been 

extensively investigated [11]. We briefly review related 

work below. LeFevre et al. [17] addressed the scalability 

problem of anonymization algorithms via introducing 

scalable decision trees and sampling techniques. 

Iwuchukwu and Naughton [18] proposed an R-tree index-

based approach by building a spatial index over data sets, 

achieving high efficiency. However, the above approaches 

aim at multidimensional generalization [15], thereby 

failing to work in the TDS approach. Fung et al. [12], [20], 

[21] proposed the TDS approach that produces anonymous 

data sets without the data exploration problem [11]. A data 

structure Taxonomy Indexed PartitionS (TIPS) is 

subjugated to improve the efficiency of TDS. But the 

approach is centralized, leading to its insufficiency in 

handling large-scale data sets. Several distributed 

algorithms are proposed to preserve privacy of multiple 

data sets retained by multiple parties. Jiang and Clifton 

[24] and Mohammed et al. [22] proposed distributed 

algorithms to anonymize vertically partitioned data from 

different data sources without disclosing privacy 

information from one party to another. Jurczyk and Xiong 

[25] and Mohammed et al. [20] proposed distributed 

algorithms to anonymize horizontally partitioned data sets 

retained by multiple holders. However, the above 

distributed algorithms mainly aim at securely integrating 

and anonymizing multiple data sources. Our research 

mainly focuses on the scalability issue of TDS 

anonymization, and is, therefore, orthogonal and 

complementary to them. As to MapReduce-relevant 

privacy protection, Roy et al. [26] investigated the data 

privacy problem caused by MapReduce and presented a 

system named Airavat incorporating mandatory access 

control with differential privacy. Further, Zhang et al. [27] 

leveraged MapReduce to automatically partition a 

computing job in terms of data security levels, protecting 

data privacy in hybrid cloud. Our research exploits 

MapRedue itself to anonymize large-scale data sets before 

data are further processed by other MapReduce jobs, 

arriving at privacy preservation. 

B.Problem Analysis 

We analyze the scalability problem of existing TDS 

approaches when handling large-scale data sets on cloud. 

The centralized TDS approaches in [12], [20], and [21] 

exploits the data structure TIPS to improve the scalability 

and efficiency by indexing anonymous data records and 

retaining statistical information in TIPS. The data structure 

speeds up the specialization process because indexing 

structure avoids frequently scanning entire data sets and 

storing statistical results circumvents recomputation 

overheads. On the other hand, the amount of metadata 

retained to maintain the statistical information and linkage 

information of record partitions is relatively large 

compared with data sets themselves, thereby consuming 

considerable memory. Moreover, the overheads incurred 

by maintaining the linkage structure and updating the 

statistic information will be huge when date sets become 

large. Hence, centralized approaches probably suffer from 

low efficiency and scalability when handling large-scale 

data sets. There is an assumption that all data processed 

should fit in memory for the centralized approaches [12]. 

Unfortunately, this assumption often fails to hold in most 

data-intensive cloud applications nowadays. In cloud 

environments, computation is provisioned in the form of 

virtual machines (VMs). Usually, cloud compute services 

offer several flavors of VMs. As a result, the centralized 

approaches are difficult in handling large-scale data sets 

well on cloud using just one single VM even if the VM has 

the highest computation and storage capability. A 

distributed TDS approach [20] is proposed to address the 

distributed anonymization problem which mainly concerns 

privacy protection against other parties, rather than 

scalability issues. Further, the approach only employs 

information gain, rather than its combination with privacy 

loss, as the search metric when determining the best 

specializations. As pointed out in [12], a TDS algorithm 

without considering privacy loss probably chooses a 

specialization that leads to a quick violation of anonymity 

requirements. Hence, the distributed algorithm fails to 

produce anonymous data sets exposing the same data 
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utility as centralized ones. Besides, the issues like 

communication protocols and fault tolerance must be kept 

in mind when designing such distributed algorithms. As 

such, it is inappropriate to leverage existing distributed 

algorithms to solve the scalability problem of TDS. 

 

III. PROPOSED SYSTEM 

  In this paper, we propose a scalable two-phase top-down 

specialization (TDS) approach to anonymize large-scale 

data sets using the MapReduce framework on cloud. In 

both phases of our approach, we deliberately design a 

group of innovative MapReduce jobs to concretely 

accomplish the specialization computation in a highly 

scalable way. This approach get input data‟s and split into 

the small data sets.  Then we apply the 

ANONYMIZATION on small data sets to get intermediate 

result. Then small data sets are merge and again apply the 

ANONYMIZATION.  We analyze the each and every data 

set sensitive field and give priority for this sensitive field.  

Then we apply ANONYMIZATION on this sensitive field 

only depending upon the scheduling. 

 

A.ADVANTAGES OF PROPOSED SYSTEM 

• Accomplish the specializations in a highly 

 scalable fashion. 

▪ Gain high scalability. 

◦ Significantly improve the scalability and 

 efficiency of TDS for data anonymization over 

existing approaches. 

• The overall performance of the providing privacy 

 is high. 

• Its ability to handles the large amount of dat  sets. 

• The anonymization is effective to provide the 

 privacy on data sets. 

• Here we using the scheduling strategies to handle 

the high amount of datasets. 

 

IV.PRELIMINARY 

A.Basic Notations 

We describe several basic notations for convenience. Let D 

denote a data set containing data records. A record r € D 

has the form r = (v1, v2, . . . , vm, sv), where m is the 

number of attributes, vi, 1 ≤ i ≤ m, is an attribute value and 

sv is a sensitive value like diagnosis. The set of sensitive 

values is denoted as SV. An attribute of a record is denoted 

as Attr, and the taxonomy tree of this attribute is denoted as 

TT. Let DOM  represent the set of all domain values in TT. 

The quasi-identifier of a record is denoted as qid = hq1, 

q2, . . . ,qmi, where qi € DOMi. Quasi identifiers, 

representing groups of anonymous records, can lead to 

privacy breach if they are too specific that only a small 

group of people are linked to them [11]. Quasi-identifier 

set is denoted as QID =(Attr1, Attr2, . . . , Attrm). The set 

of the records with qid is defined as QI-group [28], 

denoted by QIG(qid). QI is the acronym of quasi-

identifier.Without loss of generality, we adopt k-anonymity 

[23] as the privacy model herein, i.e., for any qid € QID, 

the size of G(qid) must be zero or at least k. Otherwise, the 

individuals owning such a quasi-identifier can be linked to 

sensitive information with higher confidence than 

expected, resulting in privacy breach. The k-anonymity 

privacy model can combat such a privacy breach because 

it ensures that an individual will not be distinguished from 

other at least k _ 1 ones. The anonymity parameter k is 

specified by users according to their privacy requirements. 

In the TDS approach, a data set is anonymized via 

performing specialization operations. A specialization 

operation is to replace a domain value with all its child 

values. Formally, a specialization operation is represented 

as spec : p → Child(p), where p is a domain value and 

Child(p) DOM is the set of all the child values of p. The 

domain values of an attribute form a “cut” through its 

taxonomy tree [11]. The cut of attribute Attri, denoted as 

Cuti, 1 ≤ i ≤ m, is a subset of values in DOMi  . Cuti 

contains exactly one value in each root-to-leaf path in 

taxonomy tree TTi. The cuts of all attributes determine the 

anonymity of a data set. To capture the degree of 

anonymization intuitively during the specialization 

process, we give the subsequent definition. 

 

Definition 1. (Anonymization Level). A vector of cuts of 

all attributes is defined as anonymization level, denoted as 

AL. Formally, AL = (Cut1; Cut2; . . . ; Cutm), where Cuti, 

1 ≤ i ≤ m is the cut of taxonomy tree TTi. 
 

Anonymization level can intuitively represent the 

anonymization degree of a data set, i.e., the more specific 

AL a data set has, the less degree of anonymization it 

corresponds to. Thus, TDS approaches employ 

anonymization level to track and manage the specialization 

process. 

 

B.Top-Down Specialization 
Generally, TDS is an iterative process starting 

from the topmost domain values in the taxonomy trees of 

attributes. Each round of iteration consists of three main 

steps, namely, finding the best specialization, performing 

specialization and updating values of the search metric for 

the next round [12]. Such a process is repeated until k-

anonymity is violated, to expose the maximum data utility. 

The goodness of a specialization is measured by a search 

metric. We adopt the information gain per privacy loss 

(IGPL), a trade off metric that considers both the privacy 

and information requirements, as the search metric in our 

approach. A specialization with the highest IGPL value is 

regarded as the best one and selected in each round. 

Given a specialization spec : p → Child(p), the IGPL of 

the specialization is calculated by   

IGPL(spec) = IG(spec)=(PL(spec) + 1).                  (1) 

The term IG(spec) is the information gain after performing 

spec, and PL(spec) is the privacy loss. IG(spec) and 

PL(spec) can be computed via statistical information 

derived from data sets. 
 

V. TWO-PHASE TOP DOWN 

SPECIALIZATION(TPTDS) 

A.Sketch of Two-Phase Top-Down Specialization 

We propose a TPTDS approach to conduct the 

computation required in TDS in a highly scalable and 

efficient fashion. The two phases of our approach are 
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based on the two levels of parallelization provisioned by 

MapReduce on cloud. Basically, MapReduce on cloud has 

two levels of parallelization, i.e., job level and task level. 

Job level parallelization means that multiple MapReduce 

jobs can be executed simultaneously  to make full use of 

cloud infrastructure resources. Combined with cloud, 

MapReduce becomes more powerful and elastic as cloud 

can offer infrastructure resources on demand, for example, 

Amazon Elastic MapReduce service [29]. Task level 

parallelization refers to that multiple mapper/reducer tasks 

in a MapReduce job are executed simultaneously over data 

splits. To achieve high scalability, we parallelizing 

multiple jobs on data partitions in the first phase, but the 

resultant anonymization levels are not identical. To obtain 

finally consistent anonymous data sets, the second phase is 

necessary to integrate the intermediate results and further 

anonymize entire data sets. Details are formulated as 

follows. In the first phase, an original data set D is 

partitioned into smaller ones.Then, we run a subroutine 

over each of the partitioned data sets in parallel to make 

full use of the job level parallelization of MapReduce. The 

subroutine is a MapReduce version of centralized TDS 

(MRTDS) which concretely conducts the computation 

required in TPTDS. MRTDS anonymizes data partitions to 

generate intermediate anonymization levels. An 

intermediate anonymization level means that further 

specialization can be performed without violating k 

anonymity. MRTDS only leverages the task level 

parallelization of MapReduce. Formally, let function 

MRTDS(D,  k, AL) → AL0 represent a MRTDS routine 

that anonymizes data set D to satisfy k-anonymity from 

anonymization level AL to AL0. Thus, a series of functions 

MRTDS(Di,  kI, AL0) → AL0i, 1 ≤ i ≤ p, are executed 

simultaneously in the first phase. The term kI denotes the 

intermediate anonymity parameter, usually given by 

application domain experts. Note that kI should satisfy kI 

≥ k to ensure privacy preservation. AL0 is the initial 

anonymization level, i.e., AL0 = ({Top1}, {Top2}, . . ., 

{Topm}), where Topj € DOMj, 1 ≤ j ≤ m, is the topmost 

domain value in TTi. AL0 i is the resultant intermediate 

anonymization level. In the second phase, all intermediate 

anonymization levels are merged into one. The merged 

anonymization level is denoted as ALI . The merging 

process is formally represented as function 

merge((AL01,AL02, . . .;AL0p)) → ALI .Then, the whole 

data set D is further anonymized based on ALI , achieving 

k-anonymity finally, i.e., MRTDS(D, k, ALI) → AL⃰, where 

AL⃰ denotes the final anonymization level. 
 

ALGORITHM 1. SKETCH OF TWO-PHASE TDS 

(TPTDS). 

 

Input: Data set D, anonymity parameters k, kI and the 

number of partitions p. 
Output: Anonymous data set D⃰. 
1: Partition D into Di,1 ≤ i ≤ p. 

2: Execute MRTDS(Di, kI, AL0) → AL0i, 1 ≤ i ≤ p in 

parallel as multiple MapReduce jobs. 

3: Merge all intermediate anonymization levels into one, 

Merge(AL01, AL02,  . . ., AL0p) → ALI . 

4: Execute MRTDS(D,  k, ALI) → AL⃰  to achieve k-

anonymity. 

5: Specialize D according to AL⃰, Output D⃰. 

  

In essential, TPTDS divides specialization operations 

required for anonymization into the two phases. Let SP1i, 

1 ≤ i ≤ p, denote the specialization sequence on Di in the 

first phase, i.e., SP1i = (speci1, speci2, . . . ; speciji ), 

where ji is the number of specializations. The first 

common subsequence of SP1i, 1 ≤ i ≤ p, is denoted as SPI 

. Let SP2 denote the specialization sequence in the second 

phase. SP2 is determined by ALI rather than kI . 

Specifically, more specific ALI implies smaller SP2. 

Throughout TPTDS, the specializations in the set SPI ᶸ 

SP2 come into effect for anonymization. The influence of 

p and kI on the efficiency is analyzed as follows. Greater p 

means higher degree of parallelization in the first phase, 

and less kI indicates more computation is conducted in the 

first phase. Thus, greater p and less kI can improve the 

efficiency. 

 

B.Data Partition 
When D is partitioned into Di, 1 ≤ i ≤ p, it is 

required that the distribution of data records in Di is 

similar to D.A data record here can be treated as a point in 

an m-dimension space, where m is the number of 

attributes. Thus, the intermediate anonymization levels 

derived from Di, 1 ≤ i ≤ p, can be more similar so that we 

can get a better merged anonymization level. Random 

sampling technique is adopted to partition D, which can 

satisfy the above requirement. Specifically, a random 

number rand, 1 ≤ rand ≤ p, is generated for each data 

record. A record is assigned to the partition Drand. 

Algorithm 2 shows the MapReduce program of data 

partition. Note that the number of Reducers should be 

equal to p, so that each Reducer handles one value of rand, 

exactly producing p resultant files. Each file contains a 

random sample of D. 

 

ALGORITHM 2. DATA PARTITION  MAP & 

REDUCE. 

Input: Data record (IDr, r), r € D, partition parameter p. 
Output: Di, 1 ≤ i ≤ p. 
Map: Generate a random number rand, where 1 ≤ rand ≤ p; 

emit (rand, r). 

Reduce: For each rand, emit (null, list(r)). Once partitioned 

data sets Di, 1 ≤ i ≤ p, are obtained, we run MRTDS(Di, 

kI, AL0) on these data sets in parallel to derive 

intermediate anonymization levels ALi , 1 ≤  i ≤ p. 

C. Anonymization Level Merging 

All intermediate anonymization levels are merged into one 

in the second phase. The merging of anonymization levels 

is completed by merging cuts. Specifically, let Cuta in 

AL0a and Cutb in AL0b be two cuts of an attribute. There 

exist domain values qa € Cuta and qb € Cutb that satisfy 

one of the three conditions: qa is identical to qb, qa is more 

general than qb, or qa is more specific than qb. To ensure 

that the merged intermediate anonymization level ALI 

never violates privacy requirements, the more general one 
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is selected as the merged one, for example, qa will be 

selected if qa is more general than or identical to qb. For 

the case of multiple anonymization levels, we can merge 

them in the same way iteratively. The following lemma 

ensures that ALI still complies privacy requirements. 

 D.Data Specialization 

An original data set D is concretely specialized for 

anonymization in a one-pass MapReduce job. After 

obtaining the merged intermediate anonymization level 

ALI, we run MRTDS(D,  k, ALI) on the entire data set D, 

and get the final anonymization level AL⃰. Then, the data 

set D is anonymized by replacing original attribute values 

in D with the responding domain values in AL⃰. Details of 

Map and Reduce functions of the data specialization 

MapReduce job are described in Algorithm3. The Map 

function emits anonymous records and its count. The 

Reduce function simply aggregates these anonymous 

records and counts their number. An anonymous record 

and its count represent a QI-group. The QI-groups 

constitute the final anonymous data sets. 

ALGORITHM 3. DATA SPECIALIZATION MAP & 

REDUCE. 

 

Input: Data record (IDr, r), r € D.  ; Anonymization level 

AL⃰. 
Output: Anonymous record (r⃰ , count). 
Map: Construct anonymous record r⃰  = p1, (p2, . . . , pm, 

sv), pi, 1 ≤ i ≤ m, is the parent of a specialization in current 

AL and is also an ancestor of vi in r, emit (r⃰,count). 

Reduce: For each r⃰, sum ← ∑count, emit (r⃰ , sum). 

 

VI. MAPREDUCE VERSION OF        

CENTRALIZED TDS 

We elaborate the MRTDS in this section. MRTDS 

plays a core role in the two-phase TDS approach, as it is 

invoked in both phases to concretely conduct computation. 

Basically, a practical MapReduce program consists of Map 

and Reduce functions, and a Driver that coordinates the 

macro execution of jobs. 

A. MRTDS Driver 
Usually, a single MapReduce job is inadequate to 

accomplish a complex task in many applications. Thus, a 

group of MapReduce jobs are orchestrated in a driver 

program to achieve such an objective. MRTDS consists of 

MRTDS Driver and two types of jobs, i.e., IGPL 

Initialization and IGPL Update. The driver arranges the 

execution of jobs. 

 

B. IGPL Initialization Job 
The main task of IGPL Initialization is to initialize 

information gain and privacy loss of all specializations in 

the initial anonymization level AL. 

 

C.IGPL Update Job 
The IGPL Update job dominates the scalability 

and efficiency of MRTDS, since it is executed iteratively. 

So far, iterative MapReduce jobs have not been  well 

supported by standard MapReduce framework like 

Hadoop. The IGPL Update job is quite similar to IGPL 

Initialization, except that it requires less computation and 

consumes less network bandwidth. 

 Since the IGPL Update job dominates the scalability and 

efficiency of MRTDS, we briefly analyze its complexity as 

follows. Let n denote all the records in a data set, m be the 

number of attributes, s be the number of mappers, and t be 

the number of reducers. As a mapper emits (m + 1) key-

value pairs, it takes O(1) space and O(m + n/s) 

time.Similarly, a reducer takes O(1) space and O(m + n/t) 

time. Note that a reducer only needs O(1) space due to the 

MapReduce feature that the key-value pairs are sorted in 

the shuffle phase. Otherwise, the reducer needs more space 

to accumulate statistic information for a variety of 

specializations. The communication cost is O(m + n) 

according to the map function, but communication traffics 

can be reduced heavily by optimization techniques like 

Combiner. 

 
Fig.1. Execution framework overview of MRTDS. 

D.Implementation and Optimization 

To elaborate how data sets are processed in MRTDS, 

the execution framework based on standard MapReduce is 

depicted in Fig. 1. The solid arrow lines represent the data 

flows in the canonical MapReduce framework. From Fig. 

1, we can see that the iteration of MapReduce jobs is 

controlled by anonymization level AL in Driver. The data 

flows for handling iterations are denoted by dashed arrow 

lines. AL is dispatched from Driver to all workers 

including Mappers and Reducers via the distributed cache 

mechanism. The value of AL is modified in Driver 

according to the output of the IGPL Initialization or IGPL 

Update jobs. As the amount of such data is extremely 

small compared with data sets that will be anonymized, 

they can be efficiently transmitted between Driver and 

workers. We adopt Hadoop, an open-source 

implementation of MapReduce, to implement MRTDS. 

Since most of Map and Reduce functions need to access 

current anonymization level AL, we use the distributed 

cache mechanism to pass the content of AL to each 

Mapper or Reducer node as shown in Fig. 1. Also, Hadoop 

provides the mechanism to set simple global variables for 

Mappers and Reducers. The best specialization is passed 

into the Map function of IGPL Update job in this way. The 

partition hash function in the shuffle phase is modified 

because the two jobs require that the key-value pairs with 

the same key:p field rather than entire key should go to the 

same Reducer. To reduce communication traffics, MRTDS 

exploits combiner mechanism that aggregates the key-

value pairs with the same key into one on the nodes 

running Map functions. 
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VI. CONCLUSION 

In this paper, we have investigated the scalability 

problem of large-scale data anonymization by TDS, and 

proposed a highly scalable two-phase TDS approach using 

MapReduce on cloud. Data sets are partitioned and 

anonymized in parallel in the first phase, producing 

intermediate results. Then, the intermediate results are 

merged and further anonymized to produce consistent k-

anonymous data sets in the second phase. 

We have creatively applied MapReduce on cloud to data 

anonymization and intentionally designed a group of 

inventive MapReduce jobs to concretely achieve the 

specialization computation in a highly scalable way. The 

scalability and efficiency of TDS are improved 

significantly over existing approaches. 
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